Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(11): 7233-7242, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451498

RESUMO

The T cell membrane is studded with >104 T cell receptors (TCRs) that are used to scan target cells to identify short peptide fragments associated with viral infection or cancerous mutation. These peptides are presented as peptide-major-histocompatibility complexes (pMHCs) on the surface of virtually all nucleated cells. The TCR-pMHC complex forms at cell-cell junctions, is highly transient, and experiences mechanical forces. An important question in this area pertains to the role of the force duration in immune activation. Herein, we report the development of force probes that autonomously terminate tension within a time window following mechanical triggering. Force-induced site-specific enzymatic cleavage (FUSE) probes tune the tension duration by controlling the rate of a force-triggered endonuclease hydrolysis reaction. This new capability provides a method to study how the accumulated force duration contributes to T cell activation. We screened DNA sequences and identified FUSE probes that disrupt mechanical interactions with F > 7.1 piconewtons (pN) between TCRs and pMHCs. This rate of disruption, or force lifetime (τF), is tunable from tens of minutes down to 1.9 min. T cells challenged with FUSE probes with F > 7.1 pN presenting cognate antigens showed up to a 23% decrease in markers of early activation. FUSE probes with F > 17.0 pN showed weaker influence on T cell triggering further showing that TCR-pMHC with F > 17.0 pN are less frequent compared to F > 7.1 pN. Taken together, FUSE probes allow a new strategy to investigate the role of force dynamics in mechanotransduction broadly and specifically suggest a model of serial mechanical engagement boosting TCR activation.


Assuntos
Mecanotransdução Celular , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T , Ativação Linfocitária , Fenômenos Mecânicos , Peptídeos/química , Ligação Proteica
2.
J Am Chem Soc ; 146(10): 6830-6836, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38418383

RESUMO

Mechanical forces are crucial for biological processes such as T cell antigen recognition. A suite of molecular tension probes to measure pulling forces have been reported over the past decade; however, there are no reports of molecular probes for measuring compressive forces, representing a gap in the current mechanobiology toolbox. To address this gap, we report a molecular compression reporter using pseudostable hairpins (M-CRUSH). The design principle was based on a pseudostable DNA structure that folds in response to an external compressive force. We created a library of DNA stem-loop hairpins with varying thermodynamic stability, and then used Förster Resonance Energy Transfer (FRET) to quantify hairpin folding stability as a function of temperature and crowding. We identified an optimal pseudostable DNA hairpin highly sensitive to molecular crowding that displayed a shift in melting temperature (Tm) of 7 °C in response to a PEG crowding agent. When immobilized on surfaces, this optimized DNA hairpin showed a 29 ± 6% increase in FRET index in response to 25% w/w PEG 8K. As a proof-of-concept demonstration, we employed M-CRUSH to map the compressive forces generated by primary naïve T cells. We noted dynamic compressive forces that were highly sensitive to antigen presentation and coreceptor engagement. Importantly, mechanical forces are generated by cytoskeletal protrusions caused by acto-myosin activity. This was confirmed by treating cells with cytoskeletal inhibitors, which resulted in a lower FRET response when compared to untreated cells. Furthermore, we showed that M-CRUSH signal is dependent on probe density with greater density probes showing enhanced signal. Finally, we demonstrated that M-CRUSH probes are modular and can be applied to different cell types by displaying a compressive signal observed under human platelets. M-CRUSH offers a powerful tool to complement tension sensors and map out compressive forces in living systems.


Assuntos
DNA , Fenômenos Mecânicos , Humanos , DNA/química , Linfócitos T , Termodinâmica , Sondas Moleculares
3.
Sci Signal ; 17(822): eadh0439, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319998

RESUMO

Naive T cells experience tonic T cell receptor (TCR) signaling in response to self-antigens presented by major histocompatibility complex (MHC) in secondary lymphoid organs. We investigated how relatively weak or strong tonic TCR signals influence naive CD8+ T cell responses to stimulation with foreign antigens. The heterogeneous expression of Nur77-GFP, a transgenic reporter of tonic TCR signaling, in naive CD8+ T cells suggests variable intensities or durations of tonic TCR signaling. Although the expression of genes associated with acutely stimulated T cells was increased in Nur77-GFPHI cells, these cells were hyporesponsive to agonist TCR stimulation compared with Nur77-GFPLO cells. This hyporesponsiveness manifested as diminished activation marker expression and decreased secretion of IFN-γ and IL-2. The protein abundance of the ubiquitin ligase Cbl-b, a negative regulator of TCR signaling, was greater in Nur77-GFPHI cells than in Nur77-GFPLO cells, and Cbl-b deficiency partially restored the responsiveness of Nur77-GFPHI cells. Our data suggest that the cumulative effects of previously experienced tonic TCR signaling recalibrate naive CD8+ T cell responsiveness. These changes include gene expression changes and negative regulation partially dependent on Cbl-b. This cell-intrinsic negative feedback loop may enable the immune system to restrain naive CD8+ T cells with higher self-reactivity.


Assuntos
Linfócitos T CD8-Positivos , Receptores de Antígenos de Linfócitos T , Camundongos , Animais , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Camundongos Endogâmicos C57BL
5.
Nat Biomed Eng ; 7(11): 1404-1418, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37957275

RESUMO

Molecular forces generated by cell receptors are infrequent and transient, and hence difficult to detect. Here we report an assay that leverages the CRISPR-associated protein 12a (Cas12a) to amplify the detection of cellular traction forces generated by as few as 50 adherent cells. The assay involves the immobilization of a DNA duplex modified with a ligand specific for a cell receptor. Traction forces of tens of piconewtons trigger the dehybridization of the duplex, exposing a cryptic Cas12-activating strand that sets off the indiscriminate Cas12-mediated cleavage of a fluorogenic reporter strand. We used the assay to perform hundreds of force measurements using human platelets from a single blood draw to extract individualized dose-response curves and half-maximal inhibitory concentrations for a panel of antiplatelet drugs. For seven patients who had undergone cardiopulmonary bypass, platelet dysfunction strongly correlated with the need for platelet transfusion to limit bleeding. The Cas12a-mediated detection of cellular traction forces may be used to assess cell state, and to screen for genes, cell-adhesion ligands, drugs or metabolites that modulate cell mechanics.


Assuntos
Sistemas CRISPR-Cas , Tração , Humanos , Adesão Celular/fisiologia , Proteínas , Proteínas de Transporte
6.
bioRxiv ; 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37609308

RESUMO

The surface of T cells is studded with T cell receptors (TCRs) that are used to scan target cells to identify peptide-major histocompatibility complexes (pMHCs) signatures of viral infection or cancerous mutation. It is now established that the TCR-pMHC complex is highly transient and experiences mechanical forces that augment the fidelity of T cell activation. An important question in this area pertains to the role of force duration in immune activation. Herein, we report the development of force probes that autonomously terminate tension within a time window following mechanical triggering. Force-induced site-specific enzymatic cleavage (FUSE) probes tune tension duration by controlling the rate of a force-triggered endonuclease hydrolysis reaction. This new capability provides a method to study how accumulated force duration contributes to T cell activation. We screened DNA sequences and identified FUSE probes that disrupt mechanical interactions with F >7.1 piconewtons (pN) between TCRs and pMHCs. Force lifetimes (τF) are tunable from tens of min down to 1.9 min. T cells challenged with FUSE probes presenting cognate antigens with τF of 1.9 min demonstrated dampened markers of early activation, thus demonstrating that repeated mechanical sampling boosts TCR activation. Repeated mechanical sampling F >7.1 pN was found to be particularly critical at lower pMHC antigen densities, wherein the T cell activation declined by 23% with τF of 1.9 min. FUSE probes with F >17.0 pN response showed weaker influence on T cell triggering further showing that TCR-pMHC with F >17.0 pN are less frequent compared to F >7.1 pN. Taken together, FUSE probes allow a new strategy to investigate the role of force dynamics in mechanotransduction broadly and specifically suggest a model of serial mechanical engagement in antigen recognition.

7.
bioRxiv ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37503090

RESUMO

The T cell receptor (TCR) is thought to be a mechanosensor, meaning that it transmits mechanical force to its antigen and leverages the force to amplify the specificity and magnitude of TCR signaling. The past decade has witnessed the development of molecular probes which have revealed many aspects of receptor mechanotransduction. However, most force probes are immobilized on hard substrates, thus failing to reveal mechanics in the physiological context of cell membranes. In this report, we developed DNA origami tension sensors (DOTS) which bear force sensors on a DNA origami breadboard and allow mapping of TCR mechanotransduction at dynamic intermembrane junctions. We demonstrate that TCR-antigen bonds experience 5-10 pN forces, and the mechanical events are dependent on cell state, antigen mobility, antigen potency, antigen height and F-actin activity. We tethered DOTS onto a microparticle to mechanically screen antigen in high throughput using flow cytometry. Finally, DOTS were anchored onto live B cell membranes thus producing the first quantification of TCR mechanics at authentic immune cell-cell junctions.

8.
Angew Chem Int Ed Engl ; 62(30): e202302967, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37186502

RESUMO

Immune recognition occurs at specialized cell-cell junctions when immune cells and target cells physically touch. In this junction, groups of receptor-ligand complexes assemble and experience molecular forces that are ultimately generated by the cellular cytoskeleton. These forces are in the range of piconewton (pN) but play crucial roles in immune cell activation and subsequent effector responses. In this minireview, we will review the development of DNA based molecular tension sensors and their applications in mapping and quantifying mechanical forces experienced by immunoreceptors including T-cell receptor (TCR), Lymphocyte function-associated antigen (LFA-1), and the B-cell receptor (BCR) among others. In addition, we will highlight the use of DNA as a mechanical gate to manipulate mechanotransduction and decipher how mechanical forces regulate antigen discrimination and receptor signaling.


Assuntos
DNA , Mecanotransdução Celular , Membrana Celular , Sistema Imunitário , Antígenos , Nanotecnologia
9.
bioRxiv ; 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36747815

RESUMO

The cumulative effects of T cell receptor (TCR) signal transduction over extended periods of time influences T cell biology, such as the positive selection of immature thymocytes or the proliferative responses of naive T cells. Naive T cells experience recurrent TCR signaling in response to self-antigens in the steady state. However, how these signals influence the responsiveness of naive CD8+ T cells to subsequent agonist TCR stimulation remains incompletely understood. We investigated how naive CD8+ T cells that experienced relatively low or high levels of TCR signaling in response to self-antigens respond to stimulation with foreign antigens. A transcriptional reporter of Nr4a1 (Nur77-GFP) revealed substantial heterogeneity of the amount of TCR signaling naive CD8+ T cells accumulate in the steady state. Nur77-GFPHI cells exhibited diminished T cell activation and secretion of IFNγ and IL-2 relative to Nur77-GFPLO cells in response to agonist TCR stimulation. Differential gene expression analyses revealed upregulation of genes associated with acutely stimulated T cells in Nur77-GFPHI cells but also increased expression of negative regulators such as the phosphatase Sts1. Responsiveness of Nur77-GFPHI cells to TCR stimulation was partially restored at the level of IFNγ secretion by deficiency of Sts1 or the ubiquitin ligase Cbl-b. Our data suggest that extensive accumulation of TCR signaling during steady state conditions induces a recalibration of the responsiveness of naive CD8+ T cells through gene expression changes and negative regulation, at least in part, dependent on Sts1 and Cbl-b. This cell-intrinsic negative feedback loop may allow the immune system to limit the autoreactive potential of highly self-reactive naive CD8+ T cells.

10.
Nat Commun ; 13(1): 3222, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680882

RESUMO

Cytotoxic lymphocytes fight pathogens and cancer by forming immune synapses with infected or transformed target cells and then secreting cytotoxic perforin and granzyme into the synaptic space, with potent and specific killing achieved by this focused delivery. The mechanisms that establish the precise location of secretory events, however, remain poorly understood. Here we use single cell biophysical measurements, micropatterning, and functional assays to demonstrate that localized mechanotransduction helps define the position of secretory events within the synapse. Ligand-bound integrins, predominantly the αLß2 isoform LFA-1, function as spatial cues to attract lytic granules containing perforin and granzyme and induce their fusion with the plasma membrane for content release. LFA-1 is subjected to pulling forces within secretory domains, and disruption of these forces via depletion of the adaptor molecule talin abrogates cytotoxicity. We thus conclude that lymphocytes employ an integrin-dependent mechanical checkpoint to enhance their cytotoxic power and fidelity.


Assuntos
Antígeno-1 Associado à Função Linfocitária , Mecanotransdução Celular , Citotoxicidade Imunológica , Granzimas/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Perforina/metabolismo , Sinapses/metabolismo , Linfócitos T Citotóxicos
11.
Nat Commun ; 13(1): 1732, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365614

RESUMO

Clathrin polymerization and changes in plasma membrane architecture are necessary steps in forming vesicles to internalize cargo during clathrin-mediated endocytosis (CME). Simultaneous analysis of clathrin dynamics and membrane structure is challenging due to the limited axial resolution of fluorescence microscopes and the heterogeneity of CME. This has fueled conflicting models of vesicle assembly and obscured the roles of flat clathrin assemblies. Here, using Simultaneous Two-wavelength Axial Ratiometry (STAR) microscopy, we bridge this critical knowledge gap by quantifying the nanoscale dynamics of clathrin-coat shape change during vesicle assembly. We find that de novo clathrin accumulations generate both flat and curved structures. High-throughput analysis reveals that the initiation of vesicle curvature does not directly correlate with clathrin accumulation. We show clathrin accumulation is preferentially simultaneous with curvature formation at shorter-lived clathrin-coated vesicles (CCVs), but favors a flat-to-curved transition at longer-lived CCVs. The broad spectrum of curvature initiation dynamics revealed by STAR microscopy supports multiple productive mechanisms of vesicle formation and advocates for the flexible model of CME.


Assuntos
Clatrina , Endocitose , Membrana Celular/metabolismo , Clatrina/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Microscopia de Fluorescência
12.
Sci Adv ; 8(8): eabg4485, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35213231

RESUMO

T cells defend against cancer and viral infections by rapidly scanning the surface of target cells seeking specific peptide antigens. This key process in adaptive immunity is sparked upon T cell receptor (TCR) binding of antigens within cell-cell junctions stabilized by integrin (LFA-1)/intercellular adhesion molecule-1 (ICAM-1) complexes. A long-standing question in this area is whether the forces transmitted through the LFA-1/ICAM-1 complex tune T cell signaling. Here, we use spectrally encoded DNA tension probes to reveal the first maps of LFA-1 and TCR forces generated by the T cell cytoskeleton upon antigen recognition. DNA probes that control the magnitude of LFA-1 force show that F>12 pN potentiates antigen-dependent T cell activation by enhancing T cell-substrate engagement. LFA-1/ICAM-1 mechanical events with F>12 pN also enhance the discriminatory power of the TCR when presented with near cognate antigens. Overall, our results show that T cells integrate multiple channels of mechanical information through different ligand-receptor pairs to tune function.

13.
Bioconjug Chem ; 33(2): 279-293, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35080855

RESUMO

Delivery of nucleic acids can be hindered by multiple factors including nuclease susceptibility, endosome trapping, and clearance. Multiple nanotechnology scaffolds have offered promising solutions, and among these, lipid-based systems are advantageous because of their high biocompatibility and low toxicity. However, many lipid nanoparticle systems still have issues regarding stability, rapid clearance, and cargo leakage. Herein, we demonstrate the use of a synthetic nanodisc (ND) scaffold functionalized with an anti-HIF-1-α antisense oligonucleotide (ASO) to reduce HIF-1-α mRNA transcript levels. We prepared ND conjugates by using a mixture of phosphoglycerolipids with phosphocholine and phosphothioethanol headgroups that self-assemble into a ∼13 × 5 nm discoidal structure upon addition of a 22-amino-acid ApoA1 mimetic peptide. Optimized reaction conditions yield 15 copies of the anti-HIF-1-α ASO DNA covalently conjugated to the thiolated phospholipids using maleimide-thiol chemistry. We show that DNA-ND conjugates are active, nuclease resistant, and rapidly internalized into cells to regulate HIF-1-α mRNA levels without the use of transfection agents. DNA-ND uptake is partially mediated through Scavenger Receptor B1 and the ND conjugates show enhanced knockdown of HIF-1-α compared to that of the soluble ASOs in multiple cell lines. Our results demonstrate that covalently functionalized NDs may offer an improved platform for ASO therapeutics.


Assuntos
Nanopartículas , Oligonucleotídeos Antissenso , Lipossomos , Nanopartículas/química , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/genética , RNA Mensageiro/genética
14.
Angew Chem Int Ed Engl ; 60(36): 19974-19981, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34242462

RESUMO

Cells transmit piconewton forces to receptors to mediate processes such as migration and immune recognition. A major challenge in quantifying such forces is the sparsity of cell mechanical events. Accordingly, molecular tension is typically quantified with high resolution fluorescence microscopy, which hinders widespread adoption and application. Here, we report a mechanically triggered hybridization chain reaction (mechano-HCR) that allows chemical amplification of mechanical events. The amplification is triggered when a cell receptor mechanically denatures a duplex revealing a cryptic initiator to activate the HCR reaction in situ. Importantly, mechano-HCR enables direct readout of pN forces using a plate reader. We leverage this capability and measured mechano-IC50 for aspirin, Y-27632, and eptifibatide. Given that cell mechanical phenotypes are of clinical importance, mechano-HCR may offer a convenient route for drug discovery, personalized medicine, and disease diagnosis.


Assuntos
Aspirina/química , Eptifibatida/química , Humanos , Hibridização de Ácido Nucleico
15.
ACS Nano ; 15(5): 8427-8438, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33956424

RESUMO

Synthetic motors that consume chemical energy to produce mechanical work offer potential applications in many fields that span from computing to drug delivery and diagnostics. Among the various synthetic motors studied thus far, DNA-based machines offer the greatest programmability and have shown the ability to translocate micrometer-distances in an autonomous manner. DNA motors move by employing a burnt-bridge Brownian ratchet mechanism, where the DNA "legs" hybridize and then destroy complementary nucleic acids immobilized on a surface. We have previously shown that highly multivalent DNA motors that roll offer improved performance compared to bipedal walkers. Here, we use DNA-gold nanoparticle conjugates to investigate and enhance DNA nanomotor performance. Specifically, we tune structural parameters such as DNA leg density, leg span, and nanoparticle anisotropy as well as buffer conditions to enhance motor performance. Both modeling and experiments demonstrate that increasing DNA leg density boosts the speed and processivity of motors, whereas DNA leg span increases processivity and directionality. By taking advantage of label-free imaging of nanomotors, we also uncover Lévy-type motion where motors exhibit bursts of translocation that are punctuated with transient stalling. Dimerized particles also demonstrate more ballistic trajectories confirming a rolling mechanism. Our work shows the fundamental properties that control DNA motor performance and demonstrates optimized motors that can travel multiple micrometers within minutes with speeds of up to 50 nm/s. The performance of these nanoscale motors approaches that of motor proteins that travel at speeds of 100-1000 nm/s, and hence this work can be important in developing protocellular systems as well next generation sensors and diagnostics.


Assuntos
Ouro , Nanopartículas Metálicas , DNA , Dineínas , Movimento (Física)
16.
Angew Chem Int Ed Engl ; 60(33): 18044-18050, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-33979471

RESUMO

Mechanotransduction, the interplay between physical and chemical signaling, plays vital roles in many biological processes. The state-of-the-art techniques to quantify cell forces employ deformable polymer films or molecular probes tethered to glass substrates. However, the applications of these assays in fundamental and clinical research are restricted by the planar geometry and low throughput of microscopy readout. Herein, we develop a DNA-based microparticle tension sensor, which features a spherical surface and thus allows for investigation of mechanotransduction at curved interfaces. The micron-scale of µTS enables flow cytometry readout, which is rapid and high throughput. We applied the method to map and measure T-cell receptor forces and platelet integrin forces at 12 and 56 pN thresholds. Furthermore, we quantified the inhibition efficiency of two anti-platelet drugs providing a proof-of-concept demonstration of µTS to screen drugs that modulate cellular mechanics.


Assuntos
DNA/metabolismo , Ensaios de Triagem em Larga Escala , Actomiosina/farmacologia , Amidas/farmacologia , DNA/química , Relação Dose-Resposta a Droga , Humanos , Mecanotransdução Celular/efeitos dos fármacos , Imagem Óptica , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Piridinas/farmacologia
17.
J Vis Exp ; (169)2021 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-33818569

RESUMO

Mechanical forces transmitted at the junction between two neighboring cells and at the junction between cells and the extracellular matrix are critical for regulating many processes ranging from development to immunology. Therefore, developing the tools to study these forces at the molecular scale is critical. Our group developed a suite of molecular tension sensors to quantify and visualize the forces generated by cells and transmitted to specific ligands. The most sensitive class of molecular tension sensors are comprised of nucleic acid stem-loop hairpins. These sensors use fluorophore-quencher pairs to report on the mechanical extension and unfolding of DNA hairpins under force. One challenge with DNA hairpin tension sensors is that they are reversible with rapid hairpin refolding upon termination of the tension and thus transient forces are difficult to record. In this article, we describe the protocols for preparing DNA tension sensors that can be "locked" and prevented from refolding to enable "storing" of mechanical information. This allows for the recording of highly transient piconewton forces, which can be subsequently "erased" by the addition of complementary nucleic acids that remove the lock. This ability to toggle between real-time tension mapping and mechanical information storing reveals weak, short-lived, and less abundant forces, that are commonly employed by T cells as part of their immune functions.


Assuntos
DNA/metabolismo , Animais , Camundongos , Camundongos Transgênicos
18.
Chem Commun (Camb) ; 56(77): 11485-11488, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32857068

RESUMO

Discovering novel chemical reactions is important for bioanalysis. Herein, we report a tactic for bio-thiol sensing and protein labeling agent design by the installation of a sulfoxide group onto the skeleton of various fluorophores, and powerfully validate its abilities, which may shed light on the development of specific protein tags to give insight into their biological functions.


Assuntos
Desenho de Fármacos , Corantes Fluorescentes/química , Safrol/análogos & derivados , Compostos de Sulfidrila/análise , Corantes Fluorescentes/síntese química , Células Hep G2 , Humanos , Estrutura Molecular , Safrol/síntese química , Safrol/química
19.
Chem Sci ; 8(4): 2966-2972, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451363

RESUMO

Oxidation of methionine residues to methionine sulfoxide (MetSO) may cause changes in protein structure and function, and may eventually lead to cell damage. Methionine sulfoxide reductases (Msrs) are the only known enzymes that catalyze the reduction of MetSO back to methionine by taking reducing equivalents from the thioredoxin system, and thus protect cells from oxidative damage. Nonetheless, a lack of convenient assays for the enzymes hampers the exploration of their functions. We report the discovery of Msr-blue, the first turn-on fluorescent probe for Msr with a >100-fold fluorescence increment from screening a rationally-designed small library. Intensive studies demonstrated the specific reduction of Msr-blue by the enzymes. Msr-blue is ready to determine Msr activity in biological samples and live cells. Importantly, we disclosed a decline of Msr activity in a Parkinson's model, thus providing a mechanistic linkage between the loss of function of Msrs and the development of neurodegeneration. The strategy for the discovery of Msr-blue would also provide guidance for developing novel probes with longer excitation/emission wavelengths and specific probes for Msr isoforms.

20.
Molecules ; 21(12)2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27916910

RESUMO

Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase) and its lysine derivative (a proto-nucleoside) using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps), but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.


Assuntos
Lisina/análogos & derivados , Lisina/química , Triazinas/química , Estabilidade de Medicamentos , Cinética , Prebióticos , Teoria Quântica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...